THE SCHRÖDINGER EQUATION IN THE MEAN-FIELD AND SEMICLASSICAL REGIME

Abstract : In this paper, we establish (1) the classical limit of the Hartree equation leading to the Vlasov equation, (2) the classical limit of the N-body linear Schrödinger equation uniformly in N leading to the N-body Liouville equation of classical mechanics and (3) the simultaneous mean-field and classical limit of the N-body linear Schrödinger equation leading to the Vlasov equation. In all these limits, we assume that the gradient of the interaction potential is Lipschitz continuous. All our results are formulated as estimates involving a quantum analogue of the Monge-Kantorovich distance of exponent 2 adapted to the classical limit, reminiscent of, but different from the one defined in [F. Golse, C. Mouhot, T. Paul, Commun. Math. Phys. 343 (2016), 165-205]. As a by-product, we also provide bounds on the quadratic Monge-Kantorovich distances between the classical densities and the Husimi functions of the quantum density matrices.
Type de document :
Article dans une revue
Archive for Rational Mechanics and Analysis, Springer Verlag, 2017, 223, pp.57-94. 〈10.1007/s00205-016-1031-x〉
Liste complète des métadonnées

Littérature citée [24 références]  Voir  Masquer  Télécharger

https://hal-polytechnique.archives-ouvertes.fr/hal-01219496
Contributeur : François Golse <>
Soumis le : dimanche 17 juillet 2016 - 00:56:54
Dernière modification le : jeudi 10 mai 2018 - 01:57:29
Document(s) archivé(s) le : mardi 18 octobre 2016 - 11:50:42

Fichiers

NSchroVlasovCORRFin.pdf
Fichiers produits par l'(les) auteur(s)

Identifiants

Citation

François Golse, Thierry Paul. THE SCHRÖDINGER EQUATION IN THE MEAN-FIELD AND SEMICLASSICAL REGIME. Archive for Rational Mechanics and Analysis, Springer Verlag, 2017, 223, pp.57-94. 〈10.1007/s00205-016-1031-x〉. 〈hal-01219496v2〉

Partager

Métriques

Consultations de la notice

302

Téléchargements de fichiers

154