WAVE PACKETS AND THE QUADRATIC MONGE-KANTOROVICH DISTANCE IN QUANTUM MECHANICS - École polytechnique Access content directly
Journal Articles Comptes Rendus. Mathématique Year : 2018

WAVE PACKETS AND THE QUADRATIC MONGE-KANTOROVICH DISTANCE IN QUANTUM MECHANICS

François Golse
  • Function : Author
  • PersonId : 964158
Thierry Paul
  • Function : Author
  • PersonId : 878449
  • IdRef : 158973372

Abstract

In this paper, we extend the upper and lower bounds for the " pseudo-distance " on quantum densities analogous to the quadratic Monge-Kantorovich(-Vasershtein) distance introduced in [F. Golse, C. Mouhot, T. Paul, Commun. Math. Phys. 343 (2016) 165–205] to positive quantizations defined in terms of the family of phase space translates of a density operator, not necessarily of rank one as in the case of the Töplitz quantization. As a corollary , we prove that the uniform (for vanishing h) convergence rate for the mean-field limit of the N-particle Heisenberg equation holds for a much wider class of initial data than in [F. Golse, C. Mouhot, T. Paul, loc. cit.]. We also discuss the relevance of the pseudo-distance compared to the Schatten norms for the purpose of metrizing the set of quantum density operators in the semiclassical regime.
Fichier principal
Vignette du fichier
CohStaGenFin.pdf (268.86 Ko) Télécharger le fichier
Origin : Files produced by the author(s)
Loading...

Dates and versions

hal-01562203 , version 1 (13-07-2017)

Identifiers

Cite

François Golse, Thierry Paul. WAVE PACKETS AND THE QUADRATIC MONGE-KANTOROVICH DISTANCE IN QUANTUM MECHANICS. Comptes Rendus. Mathématique, 2018, 356, pp.177-197. ⟨10.1016/j.crma.2017.12.007⟩. ⟨hal-01562203⟩
172 View
213 Download

Altmetric

Share

Gmail Facebook Twitter LinkedIn More